Detecting and Quantifying Topography in Neural Maps
نویسندگان
چکیده
Topographic maps are an often-encountered feature in the brains of many species, yet there are no standard, objective procedures for quantifying topography. Topographic maps are typically identified and described subjectively, but in cases where the scale of the map is close to the resolution limit of the measurement technique, identifying the presence of a topographic map can be a challenging subjective task. In such cases, an objective topography detection test would be advantageous. To address these issues, we assessed seven measures (Pearson distance correlation, Spearman distance correlation, Zrehen's measure, topographic product, topological correlation, path length and wiring length) by quantifying topography in three classes of cortical map model: linear, orientation-like, and clusters. We found that all but one of these measures were effective at detecting statistically significant topography even in weakly-ordered maps, based on simulated noisy measurements of neuronal selectivity and sparse sampling of the maps. We demonstrate the practical applicability of these measures by using them to examine the arrangement of spatial cue selectivity in pallid bat A1. This analysis shows that significantly topographic arrangements of interaural intensity difference and azimuth selectivity exist at the scale of individual binaural clusters.
منابع مشابه
Analysing the Information Contributions and Anatomical Arrangement of Neurons in Population Codes
Population coding—the transmission of information by the combined activity of many neurons—is a feature of many neural systems. Identifying the role played by individual neurons within a population code is vital for the understanding of neural codes. In this thesis I examine which stimuli are best encoded by a given neuron within a population and how this depends on the informational measure us...
متن کاملLandforms identification using neural network-self organizing map and SRTM data
During an 11 days mission in February 2000 the Shuttle Radar Topography Mission (SRTM) collected data over 80% of the Earth's land surface, for all areas between 60 degrees N and 56 degrees S latitude. Since SRTM data became available, many studies utilized them for application in topography and morphometric landscape analysis. Exploiting SRTM data for recognition and extraction of topographic ...
متن کاملTopological Correlation
Quantifying the success of the topographic preservation achieved with a neural map is difficult. In this paper we present Topological Correlation, Tc, a method that assesses the degree of topographic preservation achieved based on the linear correlation between the topological distances in the neural map, and the topological distances in the induced Delaunay triangulation of the network nodes. ...
متن کاملDetecting and Modelling the Trend of Change in the Forest Land Use in Garasu Watershed Area Using Landscape Metrics
Detecting, predicting and quantifying the trends of landscape pattern change in the forests of Gharasu watershed area are necessary so as to assess the crises or prevent them. To this aim, the land use maps belonging to the years 1987, 2002 and 2018 were classified through the maximum likelihood method, and the forest area changes were estimated. Then, through the Geomod model and the forest ch...
متن کاملNeural network classification of corneal topography. Preliminary demonstration.
PURPOSE Videokeratography is a powerful tool for the diagnosis of corneal shape abnormalities. However, interpretation of the topographic map is sometimes difficult, especially when pathologies with similar topographic patterns are suspected. The neural networks model, an artificial intelligence approach, was applied for automated pattern interpretation in corneal topography, and its usefulness...
متن کامل